Brouwer Fixed Point Theorem for Simplexes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brouwer Fixed Point Theorem for Simplexes

In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of E. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the...

متن کامل

The Brouwer Fixed Point Theorem for Intervals1

(1) If a≤ c and d ≤ b, then [c,d]⊆ [a,b]. (2) If a≤ c and b≤ d and c≤ b, then [a,b]∪ [c,d] = [a,d]. (3) If a≤ c and b≤ d and c≤ b, then [a,b]∩ [c,d] = [c,b]. (4) For every subset A of R1 such that A = [a,b] holds A is closed. (5) If a≤ b, then [a, b]T is a closed subspace of R1. (6) If a≤ c and d ≤ b and c≤ d, then [c, d]T is a closed subspace of [a, b]T. (7) If a≤ c and b≤ d and c≤ b, then [a,...

متن کامل

Spherical Designs via Brouwer Fixed Point Theorem

For each N ≥ cdn 2d(d+1) d+2 we prove the existence of a spherical ndesign on Sd consisting of N points, where cd is a constant depending only on d.

متن کامل

A Brouwer fixed point theorem for graph endomorphisms

We prove a Lefschetz formula L(T ) = ∑ x∈F iT (x) for graph endomorphisms T : G→ G, where G is a general finite simple graph and F is the set of simplices fixed by T . The degree iT (x) of T at the simplex x is defined as (−1)dim(x)sign(T |x), a graded sign of the permutation of T restricted to the simplex. The Lefschetz number L(T ) is defined similarly as in the continuum as L(T ) = ∑ k(−1)tr...

متن کامل

Computable counter-examples to the Brouwer fixed-point theorem

This paper is an overview of results that show the Brouwer fixed-point theorem (BFPT) to be essentially non-constructive and noncomputable. The main results, the counter-examples of Orevkov and Baigger, imply that there is no procedure for finding the fixed point in general by giving an example of a computable function which does not fix any computable point. Research in reverse mathematics has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2011

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-011-0023-4